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Abstract

Natural convection in rectangular cavities is studied numerically using a finite volume based computational procedure. In ma
cations, especially for cooling of electronic components, a natural convection configuration is encountered where a constant flu
element at the bottom surface are cooled from the isothermal sidewalls while the top wall can be considered adiabatic. The pre
is based on such a configuration where a constant flux heat source is symmetrically embedded at the bottom wall. The length
source is varied from 20 to 80% of the total length of the bottom wall. The non-heated parts of the bottom wall are considered adia
Grashof number is varied from 103 to 106. The study includes computations for cavities at various aspect ratios, ranging from 0.5 to
inclination angles of the cavity from 0◦ to 30◦. The effects aspect ratio, inclination angles, and heat source length on the convection a
transfer process in the cavity are analysed. Results are presented in the form of streamline and isotherm plots as well as the vari
Nusselt number and maximum temperature at the heat source surface under different conditions.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Air-cooling is one of the preferred methods for cooli
computer systems and other electronic equipment, du
its simplicity and low cost. The electronic components
treated as heat sources embedded on flat surfaces [1
many applications natural convection is the only feas
mode of cooling of the heat source. Besides cooling of
electronic components, there are numerous other prac
applications of natural convective cooling in rectangular
closures with various combinations of the temperature
dients, cavity aspect ratios, placement of the heat source
cold surfaces, etc.

The problem of convective heat transfer in an enclos
has been studied extensively because of the wide app
tion of such process. Ostrach [2] provided a comprehen
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review article and extensive bibliography on natural c
vection in cavities up to 1988. Other articles on the to
published after 1988 include Valencia and Frederick
Selamet et al. [4], Hasnaoui et al. [5], Papanicolaou
Gopalakrishna [6], Sundstrom and Kimura [7], Hsu a
Chen [8], Elsherbiny et al. [9], and Nguyen and Prudhom
[10], among others, who investigated natural convectio
rectangular enclosures under various configurations and
entations.

Majority of the published studies on natural convection
rectangular cavities considered either vertically or horiz
tally imposed temperature gradient. For vertically impo
temperature gradient the heat source is at the bottom su
of the cavity and the top surface being at a colder tem
ature. The sidewalls are considered adiabatic. On the o
hand for horizontal temperature gradient the heat sourc
on one of the sidewall while the other sidewall is maintain
at a colder temperature. The top and bottom surfaces are
sidered adiabatic. The hot walls in these configurations

be either of isothermal type or constant heat flux type.
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Nomenclature

A aspect ratio of the cavity,H/W

g gravitational acceleration . . . . . . . . . . . . . . m s−2

Gr Grashof number
H height of the enclosure . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity of air . . . . . . . W·m−1·K−1

L length of the heat source . . . . . . . . . . . . . . . . . . m
P dimensionless local pressure
Pr Prandtl number
q ′′ heat flux at the source. . . . . . . . . . . . . . . . W·m−2

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
U dimensionless velocity component inx-direction

V dimensionless velocity component iny-direction
W width of the enclosure . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

β thermal expansion coefficient . . . . . . . . . . . . K−1

γ cavity inclination angle
θ dimensionless temperature
ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ε dimensionless length of the heat source,L/W
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Fig. 1. Schematic diagram of the physical system.

In many applications, especially for cooling of electron
components, a configuration is encountered where the
source is at the bottom surface but the sidewalls are a
colder temperature while the top wall can be conside
adiabatic. There have been relatively few studies involv
natural convection in similar configurations published in
past. Anderson and Lauriat [11] studied the natural c
vection in a vertical square cavity heated from bottom
cooled from one side. They observed a single cell flow p
tern and the absence of Benard type instabilities. Convec
in a similar configuration where the bottom wall of the re
tangular cavity was partially heated with cooling from o
side was studied by November and Nansteel [12]. It w
reported that the heated fluid layer near the bottom w
remains attached up to the turning corner. Ganzarolli
Milanez [13] performed numerical study of steady natu
convection in rectangular enclosures heated from below
symmetrically cooled from the sides. The size of the ca
was varied from square to shallow where the cavity wi
was varied from 1–10 times of the height. The heat sou
which spanned the entire bottom wall, was either isother
or at constant heat flux condition. They observed that, for
square cavity, the flow and thermal fields are not stron
affected by the isothermal or constant heat flux bound

condition at the bottom heat source. However, distinct dif-
t

(a)

(b)

Fig. 2. (a) Convergence of the average Nusselt number with grid refinem
(b) comparison of the present computation with the experimental cor
tion of Elsherbiny et al.

ferences were observed between the isothermal and con
heat flux conditions for shallow cavity. For isothermal h
source condition, the cavity is not always thermally act

along its whole length and the flow does not fill the cavity
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uniformly. For constant heat flux condition, the isother
and streamlines occupy the whole cavity more uniform
even for low values of the Rayleigh number. The flow str
ture was found to consist of a single counter-clockwise
for all cases studied, except for a small secondary cell
to viscous drag in some cases for isothermal condition a
bottom wall of the cavity. More recently, Aydin and Yan
[14] numerically investigated the natural convection of
in a vertical square cavity with localized isothermal heat
from below and symmetrical cooling from the sidewalls. T
top wall as well as the non-heated parts of the bottom w
was considered adiabatic. The length of the symmetric
placed isothermal heat source at the bottom was varied.
counter rotating vortices were formed in the flow dom
due to natural convection. The average Nusselt numb
the heated part of the bottom wall was shown to incre
with increasing Rayleigh number as well as with increas
length of the heat source.

The present study is based on the configuration of Ay
and Yang [14] where the localized isothermal heat sourc
the bottom wall is replaced with a constant flux heat sou
which is physically more realistic for electronic compone
cooling applications. Aydin and Yang [14] did not inves
gate the effect of aspect ratio and inclination of the ca
on the heat transfer process. Ganzarolli and Milanez
also considered similar configuration and boundary co
tions but their heat source spanned the entire bottom
instead of being localized and they only considered sq
to shallow enclosures leaving out the cases for tall en
sures when the height is larger than the width.

The physical model considered here is shown in Fig
along with the important geometric parameters. It consis
a rectangular cavity of dimension,W × H , whose sidewalls
are kept at a constant temperature,TC . The aspect ratio o
the cavity is defined asA = H/W . The bottom wall has an
embedded symmetrical heat source with constant heat
q ′′, and lengthL. The remaining parts of the bottom wa
and the entire upper wall are adiabatic. With this geom
and boundary conditions, the present study reports the c
putations for cavities at various aspect ratios, ranging f
0.5 to 2, and inclination angles from 0◦ to 30◦, and their ef-
fects on the heat transfer process is analysed and the re
are presented in terms of the variation of the average Nu
number and maximum temperature at the heat source
face. The natural convection parameter, Grashof numb
varied from 103 to 106. Another important parameter of in
vestigation is the ratio of the heating element to the ca
width, L/W , which is subsequently designated asε and is
varied from 0.2 to 0.8.

2. Mathematical formulation

The governing equations for laminar steady convect

after invoking the Boussinesq approximation and neglecting
t

,

-

s
t
-

the viscous dissipation, can be expressed in the dimen
less form as

∂U

∂X
+ ∂V

∂Y
= 0 (1)

U
∂U

∂X
+ V

∂U

∂Y

= −∂P

∂X
+

(
∂2U

∂X2
+ ∂2U

∂Y 2

)
+ (Gr sinγ )θ (2)

U
∂V

∂X
+ V

∂V

∂Y

= −∂P

∂Y
+

(
∂2V

∂X2
+ ∂2V

∂Y 2

)
+ (Gr cosγ )θ (3)

U
∂θ

∂X
+ V

∂θ

∂Y
= 1

Pr

(
∂2θ

∂X2
+ ∂2θ

∂Y 2

)
(4)

whereU andV are the velocity components in theX andY

directions, respectively,P is the pressure,θ is the tempera
ture, andγ is the inclination angle of the cavity with the hor
zontal direction. Here, all distances are normalized byW , all
velocities are normalized byν/W , and pressure is norma
ized byρ(ν/W)2; ρ andν being the fluid density and kine
matic viscosity, respectively. The cavity widthW is chosen
for normalizing the distances since the dimensionsH and
L are varied while keepingW fixed for varying the aspec
ratio,A, and the normalized heat source length,ε. The tem-
perature is normalized asθ = (T − TC)/	T where	T is
the temperature scaling defined asq ′′W/k; k being the ther-
mal conductivity of the fluid. The dimensionless parame
appearing in Eqs. (2)–(4) are the Prandtl numberPr = ν/α

and the Grashof numberGr = gβ	T W3/ν2, whereα is the
thermal diffusivity of the fluid,β is the thermal expansio
coefficient of the fluid, andg is the gravitational accelera
tion.

The boundary conditions for the present problem is sp
ified as follows:
Top wall:

U = V = 0, ∂θ/∂Y = 0

Bottom wall:

U = V = 0

∂θ/∂Y =



0, for 0< X < 0.5− ε/2

−1, for 0.5− ε/2� X � 0.5+ ε/2

0, for 0.5+ ε/2< X < 1

Right and left wall:

U = V = 0, θ = 0.

The condition∂θ/∂Y = −1 for 0.5 − ε/2 � X � 0.5 +
ε/2 at the bottom wall arises as a consequence of con
heat flux q ′′ boundary condition. Also the dimensionle
heat flux at the bottom wall isq∗ ′′ = −k∗(∂θ/∂Y )wall =
−(1/Pr)(−1) = 1/Pr, wherek∗ = 1/Pr is the non-dimen-

sional thermal conductivity from Eq. (4).
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Fig. 3. Streamlines and isotherms in the cavity withε = 0.2 andGr = 104.
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We define the local heat transfer coefficienthx = q ′′/
[Ts(x)−Tc] at a given point on the heat source surface wh
Ts(x) is the local temperature on the surface. Accordin
the local Nusselt number and the average or overall Nu
number can be obtained respectively as

Nu = hxW

k
= 1

θs(X)
and

Nu = h̄W

k
= 1

ε

ε∫
0

1

θs(X)
dX (5)

where θs(X) is the local dimensionless temperature. T
trapezoidal rule is used for numerical integration to obt

the overall Nusselt number.
3. Numerical procedure

The set of governing equations are integrated over
control volumes, which produces a set of algebraic eq
tions. The PISO algorithm developed by Issa [15] and I
et al. [16] is used to solve the coupled system of govern
equations. The set of algebraic equations are solved seq
tially by ADI method. A second-order upwind differencin
scheme is used for the formulation of the convection c
tribution to the coefficients in the finite-volume equatio
Central differencing is used to discretize the diffusion ter
The computation is terminated when all of the residuals
below 10−5. The calculations are done using the CFD20
commercial code where the temperature source term in
momentum equation is incorporated through user sub

tines.
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Fig. 4. Streamlines and isotherms in the cavity withε = 0.2 andGr = 106.
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4. Results and discussion

The working fluid is chosen as air with Prandtl numb
Pr = 0.71. The normalized length of the constant flux h
source at the bottom wall,ε, was varied to be 0.2, 0.4, 0.
and 0.8. For each value ofε, the Grashof number,Gr, was
varied as 103, 104, 105, and 106, the aspect ratio,A, was
varied as 0.5, 1, 1.5, and 2 while the inclination angle,γ ,
was varied as 0◦, 10◦, 20◦, and 30◦. Thus the computation
were done for a total of 256 configurations.

In order to obtain grid independent solution, a grid
finement study is performed for a square horizontal ca
(A = 1, γ = 0) with ε = 0.4. Fig. 2(a) shows the conve
gence of the average Nusselt number,Nu, at the heated

surface with grid refinement. It is observed that grid indepen-
dence is achieved with a 70× 70 grid beyond which there i
insignificant change inNu. This grid resolution is therefor
used for all subsequent computations forA � 1. For taller
cavities withA > 1, a proportionately larger number of grid
in they-direction are used while keeping the number of gr
in thex-direction fixed at 70.

Published experimental data are not available for the
ity configuration and boundary conditions similar to that u
dertaken in the present study. Thus, direct validation of
computations against suitable experimental data could
be performed. However, in order to validate the predic
capability and accuracy of the present code, computat
are performed using the configuration and boundary co
tions of the experiment conducted by Elsherbiny et al.

They measured natural convection heat transfer in vertical



870 M.A.R. Sharif, T.R. Mohammad / International Journal of Thermal Sciences 44 (2005) 865–878
Fig. 5. Streamlines and isotherms in the cavity withε = 0.6 andGr = 104.
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and inclined rectangular cavities where the isothermal s
walls were at different temperatures and the end walls w
perfectly conducting having a linearly varying temperat
bounded by the temperature of the sidewalls. Computat
are performed for one of their vertical cavity configurati
with aspect ratio 5 for which they provided the correlat
for the overall Nusselt number as a function of the Rayle
number,Ra (Ra = Gr Pr), as

Nu = max

{[
1+

(
0.193Ra1/4

1+ (1800/Ra)1.289

)3]1/3

,

0.0605Ra1/3
}

(6)

for Ra < 108. The average Nusselt numbers computed

the present code for values ofRa ranging from 103 to 106
are compared with the correlation of Elsherbiny et al.
given in Eq. (6) in Fig. 2(b). The agreement is found to
excellent with a maximum discrepancy of about 4%, wh
validates the present computations indirectly.

The predicted values of the average Nusselt number
the maximum temperature at the heated surface and its
tion for the whole set of 256 configurations computed in t
study have been tabulated in Tables 1–4.

The hydrodynamic and thermal fields in the cavity in
form of streamlines and isotherms for various cavity asp
ratios are shown in Figs. 3–6 for inclination angles 0◦ and
20◦ with ε = 0.2 as well as 0.6, at a Grashof number
104 and 106 as representative cases. For horizontal ca
(γ = 0◦), where the buoyancy force is acting only in t

y-direction, the flow domain and boundary conditions are
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Fig. 6. Streamlines and isotherms in the cavity withε = 0.6 andGr = 106.
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symmetrical and two counter-rotating rolls are formed in
cavity. In each case the flow rises along the vertical s
metry axis and gets blocked at the top adiabatic wall, wh
turns the flow horizontally towards the isothermal cold wa
The flow then descends downwards along the sidewalls
turns back horizontally to the central region after hitting
bottom wall. The presence of the stagnation point is noti
at the midpoint of the bottom surface. The isotherm plots
also symmetrical about the vertical mid plane and conc
trated towards the hot surface indicating the presence
large temperature gradient there. For the inclined cavity
symmetry is completely destroyed due to the buoyancy fo
components acting in bothx- andy-directions. Multiple ma-
jor and minor vortices are formed in the cavity especially

A � 1. Similar behavior of the flow and thermal fields is ob-
served at other Grashof numbers, heated surface lengths
inclination angles, for which the plots are not shown here
brevity.

The evolution of the flow and thermal fields with Grash
number for a horizontal cavity of aspect ratio 1 for a re
resentative case withε = 0.4 is presented in Fig. 7(a). Tw
symmetric counter-rotating rolls are formed at all Gras
numbers considered here. For lowerGr (103 and 104) the
convection intensity in the cavity is very weak as evid
from the stream function values which are at least an o
of magnitude smaller that those forGr = 105 and 106. Thus
viscous forces are more dominant than the buoyancy fo
at lowerGr and diffusion is the principal mode of heat tran
fer. At higherGr when the intensity of convection increas

significantly, the core of the circulating rolls moves up and
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Fig. 7. Evolution of the flow in the cavity; (a) with Grashof number (A = 1, ε = 0.4, γ = 0◦) and (b) with inclination (A = 1, ε = 0.4, Gr = 105).

(a) (b)
Fig. 8. Local Nusselt number along the heated surface forε = 0.6; (a)γ = 0◦ and (b)γ = 20◦.
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(a) (b)
Fig. 9. Variation of the average Nusselt number at the heated surface with Grashof number.
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the isotherm patterns changes significantly indicating
the convection is the dominating heat transfer mechan
in the cavity. Aydin and Yang [14] also observed similar b
haviour when investigating the same problem with locali
symmetrical isothermal heat source at the bottom.

The evolution of the flow and thermal fields in the ca
ity with increasing inclination are shown in Fig. 7(b) for
representative case of aspect ratio 1 (square cavity) a
Gr = 105 with ε = 0.4. It is observed that the left recircula
ing vortex becomes dominating in the cavity while the rig
vortex is squeezed thinner and ultimately is divided into t
minor corner vortices. The isotherms are also adjusted
cording to the changes in the flow field and pushed towa
the lower part of the right sidewall indicating the presence
a large temperature gradient there.

The variation of the local Nusselt number, along
heated surface for different aspect ratios and Grashof n
ber with ε = 0.6 (as a representative case) is shown
Fig. 8(a) for horizontal cavity. The plots exhibit a symmet

pattern of heat transfer mechanism due to the symmetry of
t

configuration and boundary conditions. It is to be noted
the local Nusselt number does not change significantly
taller cavities for aspect ratios greater than 1. It is obse
from the streamline plots that the convection is very w
in the upper parts of the taller cavities keeping most of
convective heat transfer process confined towards the lo
parts of the cavity. Thus increasing the aspect ratio beyo
does not improve the heat transfer process appreciably.
explains the insensitivity of the Nusselt number with lar
aspect ratios at a particular Grashof number. The Nus
number is minimum at the mid-point of the heated surf
since the stagnation point is located there and conve
heat transfer is minimum. The corresponding variation of
local Nusselt number for the inclined cavity at an inclinat
of 20◦ is shown in Fig. 8(b). As expected the local Nuss
number variation is asymmetric which is more prevalen
higher Grashof number and for taller cavities. In this c
also the variation curves for taller cavities are clustered
gether with that for square cavity indicating the insensitiv

of the Nusselt number with aspect ratio for taller cavities.
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(a) (b)
Fig. 10. Variation of the maximum temperature at the heated surface with Grashof number.
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The location of the minimum Nusselt number shifts to
right as the aspect ratio is increased.

The variation of the average Nusselt number,Nu, at the
constant flux hot surface with Grashof number,Gr, for the
entire set of the heated surface lengths(ε), aspect ratios(A),
and cavity inclination angles(γ ) investigated are shown i
Fig. 9. In general, it is observed that at any particular
pect ratio and heat source length,Nu increases significantl
with Gr due to enhanced convection especially forGr > 104.
For Gr � 104, Nu is almost invariant due to the diffusio
dominated heat transfer, as mentioned earlier. Inclination
noticeable effect only for cavities with higher aspect rat
(A � 1) and lower heat source lengths(ε � 0.4).

One of the major differences between the isothermal
constant flux heat source condition is that the surface t
perature at the source is not uniform and a maximum t
perature exists on the surface for the latter case. In electr
component cooling applications, the maximum tempera
on the surface is a critical issue since it may be detrime
to the circuitry if too high. It is therefore of interest to exam
ine the maximum temperature at the heated surface clo

The variation of the maximum dimensionless temperature,
.

θmax, on the heated surface, withGr for all the cases consid
ered here is presented in Fig. 10. In general,θmax decreases
with increasingGr as opposed to the variation ofNu with
Gr. This is due to the fact that the local Nusselt numbe
reciprocal of the dimensionless surface temperature for
constant heat flux condition. The maximum temperature
creases much more rapidly forGr > 104 due to stronge
convection. The location ofθmax is at the middle of the
heated surface (stagnation point) for horizontal cavity
shifts gradually to the right with increasing inclination (s
Tables 1–4).

The variation of the average Nusselt number at the he
surface with aspect ratio, heat source length, and cavity
clination are shown in Fig. 11(a)–(c), respectively, for so
representative cases. It is observed that whileNu increases
mildly with A for a particular set ofε andγ , and decrease
mildly with ε for a particular set ofA andγ , it remains al-
most invariant withγ for a particular set ofA andε, at all
Gr. It is also noticed that there is no significant difference
the variation patterns forNu betweenGr = 103 and 104 due

to diffusion dominated heat transfer.
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Fig. 11. Variation of the average Nusselt number,Nu; (a) with aspect ratio,A, (b) with length of the heated surface,ε, and (c) with inclination,γ .
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5. Conclusions

Natural convective cooling of a localized constant h
flux surface embedded symmetrically at the bottom of
air-filled rectangular cavity where the top wall is adiaba
and cold sidewalls are isothermal is investigated and
lyzed numerically for a range of heat source length, Gras
number, cavity aspect ratio, and inclination of the cavity. T
flow and thermal fields and the variation of the average N
selt number and maximum temperature on the heated su
are presented for several representative cases out of th
configurations studied. The conclusions of the study ar
follows:

(1) At lower Grashof number(Gr � 104), diffusion is the
dominating heat transfer mechanism whereas at hi
Grashof numbers(Gr = 105 and 106) buoyancy driven

convection is dominating. As a result, the average Nus-
e
6

selt number at the heated surface does not change
nificantly for the diffusion dominated case whereas
increases rather rapidly withGr for the convection dom
inated case.

(2) The maximum temperature at the heated surface
does not change significantly for the diffusion dom
nated cases but decreases rapidly withGr for convection
dominated case.

(3) The average Nusselt number and at the heated surfa
not change substantially with inclination for diffusio
dominated cases(Gr � 104). Inclination has noticeabl
effect only for cavities with higher aspect ratios(A � 1)

and lower heat source lengths(ε � 0.4) for convection
dominated cases(Gr > 104).

(4) The average Nusselt number and maximum temp
ture change mildly with aspect ratio as well as with h

source length.
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Table 1
Average Nusselt number and maximum temperature and its location on the heated surface

Dimensionless heat source length,ε = 0.2

Aspect ratio,A Grashof number,Gr Inclination angle,γ

0◦ 10◦ 20◦ 30◦

0.5 103 5.599576 5.595655 5.619158 5.589631
0.19219(0.500) 0.19232(0.500) 0.19155(0.500) 0.19251(0.500)

104 5.620137 5.600419 5.610877 5.627235
0.19186(0.500) 0.19249(0.500) 0.19213(0.500) 0.19157(0.500)

105 6.287787 6.272770 6.240290 6.180417
0.17575(0.500) 0.17606(0.500) 0.17688(0.514) 0.17867(0.514)

106 10.20755 10.16859 10.05059 9.857761
0.11916(0.500) 0.11942(0.500) 0.12034(0.514) 0.12238(0.514)

1.0 103 5.926608 5.926616 5.926764 5.933348
0.18194(0.500) 0.18194(0.500) 0.18193(0.500) 0.18174(0.500)

104 5.946352 5.958288 5.969487 5.985846
0.18176(0.500) 0.18140(0.500) 0.18105(0.500) 0.18059(0.514)

105 7.124055 7.317048 7.805869 8.142054
0.15682(0.500) 0.15443(0.528) 0.14737(0.542) 0.14202(0.542)

106 11.34151 11.34926 11.37748 13.42033
0.10920(0.500) 0.10918(0.514) 0.10917(0.528) 0.09245(0.557)

1.5 103 5.928022 5.928479 5.932820 5.928059
0.18158(0.500) 0.18157(0.500) 0.18145(0.500) 0.18158(0.500)

104 5.942938 5.955989 5.970616 6.001601
0.18154(0.500) 0.18115(0.500) 0.18071(0.500) 0.17992(0.514)

105 7.147532 7.890534 8.346095 8.559571
0.15607(0.500) 0.14550(0.542) 0.13845(0.542) 0.13515(0.542)

106 11.57153 11.45313 11.35803 13.90140
0.10728(0.500) 0.10811(0.500) 0.10909(0.514) 0.08958(0.571)

2.0 103 5.929290 5.943320 5.939748 5.944537
0.18159(0.500) 0.18118(0.500) 0.18128(0.500) 0.18115(0.500)

104 5.946185 5.958255 5.981195 6.007791
0.18149(0.500) 0.18113(0.500) 0.18045(0.500) 0.17979(0.514)

105 7.150565 8.000677 8.399665 8.612411
0.15604(0.500) 0.14376(0.542) 0.13759(0.542) 0.13433(0.542)

106 11.64709 12.32789 13.63193 13.94560
0.10677(0.500) 0.10337(0.526) 0.09197(0.571) 0.08923(0.571)

Table 2
Average Nusselt number and maximum temperature and its location on the heated surface

Dimensionless heat source length,ε = 0.4

Aspect ratio,A Grashof number,Gr Inclination angle,γ

0◦ 10◦ 20◦ 30◦

0.5 103 3.782206 3.782193 3.782164 3.782118
0.29513(0.500) 0.29512(0.500) 0.29511(0.500) 0.29509(0.500)

104 3.810682 3.810449 3.809880 3.809091
0.29606(0.500) 0.29601(0.500) 0.29588(0.513) 0.29581(0.513)

105 5.057084 5.036276 4.973167 4.865728
0.24507(0.500) 0.24568(0.500) 0.24808(0.513) 0.25203(0.522)

106 9.123732 9.079546 8.943295 8.704346
0.15761(0.500) 0.15799(0.513) 0.15978(0.513) 0.16281(0.522)

1.0 103 4.084653 4.076164 4.076872 4.076910
0.27399(0.500) 0.27454(0.500) 0.27447(0.500) 0.27444(0.500)

104 4.132314 4.147985 4.179976 4.228079
0.27458(0.500) 0.27380(0.513) 0.27234(0.526) 0.26996(0.540)

105 6.057670 6.067433 6.425491 6.701919
0.20988(0.500) 0.21045(0.540) 0.20268(0.606) 0.19348(0.620)

106 10.57224 10.52246 10.69155 10.97177
0.14147(0.500) 0.14153(0.513) 0.13069(0.660) 0.12389(0.660)
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Table 2 (continued)

Dimensionless heat source length,ε = 0.4

Aspect ratio,A Grashof number,Gr Inclination angle,γ

0◦ 10◦ 20◦ 30◦

1.5 103 4.084496 4.084615 4.084965 4.085507
0.27376(0.500) 0.27375(0.500) 0.27371(0.500) 0.27365(0.500)

104 4.137095 4.161966 4.221478 4.289744
0.27403(0.500) 0.27279(0.513) 0.26989(0.526) 0.26662(0.540)

105 6.118622 6.122164 6.874618 7.060112
0.20799(0.500) 0.20841(0.526) 0.18854(0.620) 0.18220(0.633)

106 10.78857 10.64294 10.49641 11.44957
0.13854(0.526) 0.14042(0.486) 0.14263(0.513) 0.11911(0.660)

2.0 103 4.085704 4.085838 4.094634 4.086733
0.27372(0.500) 0.27370(0.500) 0.27312(0.500) 0.27360(0.500)

104 4.138167 4.163838 4.226330 4.304750
0.27399(0.500) 0.27271(0.513) 0.26963(0.526) 0.26575(0.540)

105 6.125487 6.233948 6.933184 7.115624
0.20781(0.500) 0.20683(0.566) 0.18645(0.620) 0.18026(0.633)

106 11.03852 10.93634 11.34760 11.51980
0.13706(0.500) 0.13711(0.526) 0.12283(0.660) 0.11805(0.660)

Table 3
Average Nusselt number and maximum temperature and its location on the heated surface

Dimensionless heat source length,ε = 0.6

Aspect ratio,A Grashof number,Gr Inclination angle,γ

0◦ 10◦ 20◦ 30◦

0.5 103 3.306122 3.275238 3.275148 3.289168
0.35670(0.500) 0.36011(0.500) 0.36008(0.500) 0.35845(0.500)

104 3.359769 3.335363 3.377542 3.399916
0.35957(0.500) 0.36217(0.500) 0.35698(0.514) 0.35383(0.514)

105 4.843349 4.822947 4.751560 4.630529
0.28933(0.500) 0.29003(0.500) 0.29327(0.514) 0.29845(0.528)

106 8.594213 8.563475 8.439362 8.233562
0.18469(0.500) 0.18514(0.514) 0.18705(0.514) 0.19090(0.528)

1.0 103 3.555848 3.551142 3.550651 3.551626
0.33127(0.500) 0.33171(0.500) 0.33170(0.500) 0.33153(0.500)

104 3.647968 3.667823 3.721368 3.786017
0.33342(0.500) 0.33209(0.528) 0.32824(0.550) 0.32359(0.571)

105 5.864100 5.822127 5.826853 6.003543
0.24325(0.500) 0.24436(0.542) 0.23985(0.671) 0.22992(0.700)

106 9.949690 9.900074 9.388788 9.624811
0.16308(0.500) 0.16354(0.528) 0.15940(0.728) 0.15058(0.757)

1.5 103 3.564833 3.563124 3.560210 3.564169
0.33017(0.500) 0.33032(0.500) 0.33054(0.500) 0.33011(0.514)

104 3.654667 3.700389 3.791007 3.878768
0.33255(0.500) 0.32923(0.542) 0.32287(0.557) 0.31668(0.585)

105 5.957710 5.915095 6.120661 6.287451
0.23973(0.500) 0.24124(0.528) 0.22584(0.685) 0.21651(0.700)

106 10.13065 9.947491 9.607379 10.02722
0.15923(0.500) 0.16187(0.471) 0.15715(0.742) 0.14478(0.757)

2.0 103 3.560450 3.560647 3.561853 3.573636
0.33062(0.500) 0.33058(0.500) 0.33042(0.500) 0.32924(0.514)

104 3.655994 3.705599 3.796317 3.889859
0.33244(0.500) 0.32881(0.542) 0.32247(0.557) 0.31584(0.585)

105 5.970662 5.986336 6.158870 6.328609
0.23928(0.500) 0.23800(0.585) 0.22364(0.685) 0.21421(0.700)

106 10.20651 10.11441 10.00611 10.10435
0.15779(0.500) 0.15623(0.614) 0.14865(0.742) 0.14285(0.757)
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Table 4
Average Nusselt number and maximum temperature and its location on the heated surface

Dimensionless heat source length,ε = 0.8

Aspect ratio,A Grashof number,Gr Inclination angle,γ

0◦ 10◦ 20◦ 30◦

0.5 103 3.293710 3.308650 3.289686 3.289783
0.39652 (0.500) 0.39447(0.500) 0.39696(0.500) 0.39683(0.500)

104 3.368128 3.368647 3.359017 3.393484
0.40262(0.500) 0.40215(0.500) 0.40269(0.514) 0.39623(0.528)

105 4.942136 4.921653 4.858525 4.741324
0.32009(0.500) 0.32098(0.500) 0.32431(0.514) 0.33034(0.528)

106 8.312102 8.280733 8.184567 8.013199
0.20632(0.500) 0.20696(0.514) 0.20902(0.528) 0.21291(0.542)

1.0 103 3.556180 3.561278 3.556242 3.557804
0.36373(0.500) 0.36311(0.500) 0.36361(0.500) 0.36335(0.514)

104 3.691916 3.724995 3.768441 3.826308
0.36740(0.500) 0.36384(0.542) 0.35986(0.571) 0.35397(0.585)

105 5.864436 5.815814 5.602748 5.715181
0.26514(0.500) 0.26676(0.542) 0.26473(0.714) 0.25406(0.742)

106 9.287972 9.235440 8.63273 8.762286
0.17925(0.500) 0.17989(0.542) 0.18037(0.785) 0.17223(0.814)

1.5 103 3.564219 3.568658 3.571134 3.574729
0.36242(0.500) 0.36187(0.500) 0.36149(0.514) 0.36104(0.514)

104 3.697599 3.754360 3.856081 3.927922
0.36638(0.500) 0.36079(0.557) 0.35098(0.585) 0.34416(0.600)

105 5.947177 5.897275 5.800874 5.943489
0.26077(0.500) 0.26301(0.528) 0.25115(0.728) 0.23925(0.757)

106 9.287915 9.204561 9.607379 9.075066
0.17516(0.557) 0.17818(0.471) 0.15715(0.742) 0.16604(0.828)

2.0 103 3.577598 3.566193 3.569680 3.566681
0.36091(0.500) 0.36221(0.500) 0.36172(0.514) 0.36202(0.514)

104 3.698296 3.757039 3.857999 3.934384
0.36633(0.500) 0.36059(0.557) 0.35087(0.585) 0.34360(0.614)

105 5.964245 5.891326 5.831363 5.974084
0.25996(0.500) 0.26316(0.514) 0.24855(0.728) 0.23701(0.757)

106 9.271771 9.218151 9.074269 9.144006
0.17373(0.500) 0.17405(0.614) 0.16936(0.814) 0.16367(0.828)
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